HTML

Iklan

FORMULA BINET DAN JUMLAH n SUKU PERTAMA PADA GENERALISASI BILANGAN FIBONACCI DENGAN METODE MATRIKS

FORMULA BINET DAN JUMLAH n SUKU PERTAMA PADA GENERALISASI BILANGAN FIBONACCI DENGAN METODE MATRIKS
Abstract: Bilangan Fibonacci didefinisikan sebagai barisan bilangan yang sukusukunya merupakan penjumlahan 2 suku sebelumnya. Binet pada tahun 1875 mengemukakan suatu formula Fn yang mampu menghitung suku ke-n bilangan tersebut lebih cepat tanpa harus menghitung ulang sebanyak n kali, yang kemudian dikenal dengan formula atau rumus Binet. Tujuan dari penelitian ini adalah mempelajari terbentuknya formula Binet, membentuk generalisasi dari formula Binet pada bilangan Fibonacci berderajat-p, mencari jumlah n suku pertama pada bilangan Fibonacci berderajat-p dengan pendekatan aljabar linear khususnya penggunaan matriks.
Kata kunci: matriks Fibonacci, formula Binet, diagonalisasi, matriks
Penulis: Purnamayanti Purnamayanti, Thresye Thresye, Na'imah Hijriati
Kode Jurnal: jpmatematikadd120047
Share This :
:)
:(
hihi
:-)
:D
=D
:-d
;(
;-(
@-)
:P
:o
-_-
(o)
[-(
:-?
(p)
:-s
(m)
8-)
:-t
:-b
b-(
:-#
=p~
$-)
(y)
(f)
x-)
(k)
(h)
(c)
cheer
(li)
(pl)